Sharp Bohr type inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Inequality of Ostrowski-grüss Type

The main purpose of this paper is to use a Grüss type inequality for RiemannStieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose first derivative are functions of Lipschitizian type and precisely characterize the functions for which equality holds.

متن کامل

Matrix Order in Bohr Inequality for Operators

The classical Bohr inequality says that |a+b| ≤ p|a|+q|b| for all scalars a, b and p, q > 0 with 1 p + 1 q = 1. The equality holds if and only if (p− 1)a = b. Several authors discussed operator version of Bohr inequality. In this paper, we give a unified proof to operator generalizations of Bohr inequality. One viewpoint of ours is a matrix inequality, and the other is a generalized parallelogr...

متن کامل

A Sharp Bernstein-type Inequality for Exponential Sums

A subtle Bernstein-type extremal problem is solved by establishing the equality sup 06=f∈e E2n |f ′(0)| ‖f‖[−1,1] = 2n − 1 , where e E2n := ( f : f(t) = a0 + n X j=1 aje λjt + bje −λjt , aj , bj , λj ∈ R ) . This settles a conjecture of Lorentz and others and it is surprising to be able to provide a sharp solution. It follows fairly simply from the above that 1 e − 1 n − 1 min{y − a, b − y} ≤ s...

متن کامل

A sharp weighted Wirtinger inequality

We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality

متن کامل

The Sharp Energy-capacity Inequality

Using the Oh–Schwarz spectral invariants and some arguments of Frauenfelder, Ginzburg, and Schlenk, we show that the π1-sensitive Hofer– Zehnder capacity of any subset of a closed symplectic manifold is less than or equal to its displacement energy. This estimate is sharp, and implies some new extensions of the Non-Squeezing Theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2020

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2020.124147